Show simple item record

dc.contributor.author
Schenk, Andreas
dc.date.accessioned
2021-08-02T15:52:48Z
dc.date.available
2021-07-17T03:03:34Z
dc.date.available
2021-08-02T15:52:48Z
dc.date.issued
2021-07-07
dc.identifier.issn
0021-8979
dc.identifier.issn
1089-7550
dc.identifier.other
10.1063/5.0051055
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/495597
dc.identifier.doi
10.3929/ethz-b-000495597
dc.description.abstract
The bandgap narrowing (BGN) in quasi-neutral regions of semiconductors is calculated in a finite-temperature full random-phase approximation formalism based on a simple isotropic dispersion model including band nonparabolicity. The total quasi-particle shift (QPS) is determined by the exchange-correlation self-energy of the free carriers and the correlation energy of the interaction between carriers and ionized dopants. At cryogenic temperatures, the latter part results in giant shifts of the minority band edge in n-type semiconductors with a large ratio of valence to conduction band density of states, as often present in III-V materials. However, at room temperature, the BGN does not exceed common values. The reason for this behavior is explained analytically. Whereas the exchange-correlation energy of free carriers is known to be insensitive to band structure details, the nonparabolicity of the conduction band (CB) has a strong effect on the ionic QPS of the minority carriers in n-type III-V materials. It strongly reduces the BGN at cryogenic temperatures compared to the case of a parabolic CB. This is demonstrated numerically and also analytically for n-type InGaAs. The BGN in n-type silicon becomes independent of temperature at high concentrations, but in p-type silicon, a weak temperature dependence re-emerges above the Mott density, which also can be attributed to the ionic QPS of the minority electrons. The calculated BGN for quasi-neutral regions in silicon is in good agreement with earlier photoluminescence and more recent photo-conductance measurements.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Institute of Physics
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Finite-temperature full random-phase approximation of bandgap narrowing in quasi-neutral regions: Theory including nonparabolicity and application to silicon and InGaAs
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-07-06
ethz.journal.title
Journal of Applied Physics
ethz.journal.volume
130
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
J. Appl. Physi.
ethz.pages.start
015703
en_US
ethz.size
13 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Melville, NY
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02636 - Institut für Integrierte Systeme / Integrated Systems Laboratory::03925 - Luisier, Mathieu / Luisier, Mathieu
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02636 - Institut für Integrierte Systeme / Integrated Systems Laboratory::03925 - Luisier, Mathieu / Luisier, Mathieu
en_US
ethz.date.deposited
2021-07-17T03:03:41Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-08-02T15:52:55Z
ethz.rosetta.lastUpdated
2024-02-02T14:27:49Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Finite-temperature%20full%20random-phase%20approximation%20of%20bandgap%20narrowing%20in%20quasi-neutral%20regions:%20Theory%20including%20nonparabolicity%20and%20applic&rft.jtitle=Journal%20of%20Applied%20Physics&rft.date=2021-07-07&rft.volume=130&rft.issue=1&rft.spage=015703&rft.issn=0021-8979&1089-7550&rft.au=Schenk,%20Andreas&rft.genre=article&rft_id=info:doi/10.1063/5.0051055&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record