Show simple item record

dc.contributor.author
Jakobsen, Martin E.
dc.contributor.author
Shah, Rajen D.
dc.contributor.author
Bühlmann, Peter
dc.contributor.author
Peters, Jonas
dc.date.accessioned
2023-06-07T08:18:34Z
dc.date.available
2022-06-19T03:33:36Z
dc.date.available
2022-06-20T08:27:59Z
dc.date.available
2023-06-07T08:18:34Z
dc.date.issued
2022-05
dc.identifier.issn
1532-4435
dc.identifier.issn
1533-7928
dc.identifier.uri
http://hdl.handle.net/20.500.11850/553211
dc.identifier.doi
10.3929/ethz-b-000553211
dc.description.abstract
Knowing the causal structure of a system is of fundamental interest in many areas of science and can aid the design of prediction algorithms that work well under manipulations to the system. The causal structure becomes identifiable from the observational distribution under certain restrictions. To learn the structure from data, score-based methods evaluate different graphs according to the quality of their fits. However, for large, continuous, and nonlinear models, these rely on heuristic optimization approaches with no general guarantees of recovering the true causal structure. In this paper, we consider structure learning of directed trees. We propose a fast and scalable method based on Chu–Liu–Edmonds’ algorithm we call causal additive trees (CAT). For the case of Gaussian errors, we prove consistency in an asymptotic regime with a vanishing identifiability gap. We also introduce two methods for testing substructure hypotheses with asymptotic family-wise error rate control that is valid post-selection and in unidentified settings. Furthermore, we study the identifiability gap, which quantifies how much better the true causal model fits the observational distribution, and prove that it is lower bounded by local properties of the causal model. Simulation studies demonstrate the favorable performance of CAT compared to competing structure learning methods.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
MIT Press
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Causality
en_US
dc.subject
restricted causal models
en_US
dc.subject
structure learning
en_US
dc.subject
directed trees
en_US
dc.subject
hypothesis testing
en_US
dc.title
Structure Learning for Directed Trees
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Journal of Machine Learning Research
ethz.journal.volume
23
en_US
ethz.journal.abbreviated
J. Mach. Learn. Res.
ethz.pages.start
159
en_US
ethz.size
97 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Statistics, Prediction and Causality for Large-Scale Data
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Cambridge, MA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02537 - Seminar für Statistik (SfS) / Seminar for Statistics (SfS)::03502 - Bühlmann, Peter L. / Bühlmann, Peter L.
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02537 - Seminar für Statistik (SfS) / Seminar for Statistics (SfS)::09798 - Peters, Jonas / Peters, Jonas
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02537 - Seminar für Statistik (SfS) / Seminar for Statistics (SfS)::03502 - Bühlmann, Peter L. / Bühlmann, Peter L.
ethz.identifier.url
https://www.jmlr.org/papers/v23/21-1159.html
ethz.grant.agreementno
786461
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.date.deposited
2022-06-19T03:33:42Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-06-20T08:28:09Z
ethz.rosetta.lastUpdated
2024-02-02T23:55:47Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Structure%20Learning%20for%20Directed%20Trees&rft.jtitle=Journal%20of%20Machine%20Learning%20Research&rft.date=2022-05&rft.volume=23&rft.spage=159&rft.issn=1532-4435&1533-7928&rft.au=Jakobsen,%20Martin%20E.&Shah,%20Rajen%20D.&B%C3%BChlmann,%20Peter&Peters,%20Jonas&rft.genre=article&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record