Show simple item record

dc.contributor.author
Menasce, Stefano
dc.contributor.author
Libanori, Rafael
dc.contributor.author
Coulter, Fergal Brian
dc.contributor.author
Studart, André R.
dc.date.accessioned
2024-05-02T14:24:51Z
dc.date.available
2024-01-20T10:14:10Z
dc.date.available
2024-01-22T08:26:58Z
dc.date.available
2024-05-02T14:24:51Z
dc.date.issued
2024-04-04
dc.identifier.issn
0935-9648
dc.identifier.issn
1521-4095
dc.identifier.other
10.1002/adma.202306494
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/654128
dc.identifier.doi
10.3929/ethz-b-000654128
dc.description.abstract
Self-healing silicones that are able to restore functionalities and extend the lifetime of soft devices hold great potential in many applications. However, currently available silicones need to be triggered to self-heal or suffer from creep-induced irreversible deformation during use. Here, a platform is proposed to design and print silicone objects that are programmed at the molecular and architecture levels to achieve self-healing at room temperature while simultaneously resisting creep. At the molecular scale, dioxaborolanes moieties are incorporated into silicones to synthesize self-healing vitrimers, whereas conventional covalent bonds are exploited to make creep-resistant elastomers. When combined into architectured printed parts at a coarser length scale, the layered materials exhibit fast healing at room temperature without compromising the elastic recovery obtained from covalent polymer networks. A patient-specific vascular phantom and fluidic chambers are printed to demonstrate the potential of architectured silicones in creating damage-resilient functional devices using molecularly designed elastomer materials.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley-VCH
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
additive manufacturing
en_US
dc.subject
elastomers
en_US
dc.subject
multimaterials
en_US
dc.subject
self-repair
en_US
dc.subject
vitrimers
en_US
dc.title
3D-Printed Architectured Silicones with Autonomic Self-Healing and Creep-Resistant Behavior
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2024-01-04
ethz.journal.title
Advanced Materials
ethz.journal.volume
36
en_US
ethz.journal.issue
14
en_US
ethz.journal.abbreviated
Adv Mater
ethz.pages.start
2306494
en_US
ethz.size
12 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.date.deposited
2024-01-20T10:14:11Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-05-02T14:24:52Z
ethz.rosetta.lastUpdated
2024-05-02T14:24:52Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=3D-Printed%20Architectured%20Silicones%20with%20Autonomic%20Self-Healing%20and%20Creep-Resistant%20Behavior&rft.jtitle=Advanced%20Materials&rft.date=2024-04-04&rft.volume=36&rft.issue=14&rft.spage=2306494&rft.issn=0935-9648&1521-4095&rft.au=Menasce,%20Stefano&Libanori,%20Rafael&Coulter,%20Fergal%20Brian&Studart,%20Andr%C3%A9%20R.&rft.genre=article&rft_id=info:doi/10.1002/adma.202306494&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record