High-dimensional asymptotics for percolation of Gaussian free field level sets

Open access
Datum
2015Typ
- Journal Article
Abstract
We consider the Gaussian free field on Zd, d≥3, and prove that the critical density for percolation of its level sets behaves like 1/d1+o(1) as d tends to infinity. Our proof gives the principal asymptotic behavior of the corresponding critical level h∗(d). Moreover, it shows that a related parameter h∗∗(d) introduced by Rodriguez and Sznitman in [23] is in fact asymptotically equivalent to h∗(d). Mehr anzeigen
Persistenter Link
https://doi.org/10.3929/ethz-b-000101034Publikationsstatus
publishedExterne Links
Zeitschrift / Serie
Electronic Journal of ProbabilityBand
Seiten / Artikelnummer
Verlag
Institute of Mathematical StatisticsThema
Gaussian free field; Percolation; Level sets; Long-range dependence; Decoupling inequalities; High dimensionsOrganisationseinheit
03320 - Sznitman, Alain-Sol (emeritus) / Sznitman, Alain-Sol (emeritus)