Minimal submanifolds from the abelian Higgs model
dc.contributor.author
Pigati, Alessandro
dc.contributor.author
Stern, Daniel
dc.date.accessioned
2021-02-10T14:27:55Z
dc.date.available
2020-09-26T19:39:46Z
dc.date.available
2020-09-28T10:24:20Z
dc.date.available
2021-02-10T14:27:55Z
dc.date.issued
2021-03
dc.identifier.issn
0020-9910
dc.identifier.issn
1432-1297
dc.identifier.other
10.1007/s00222-020-01000-6
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/442868
dc.identifier.doi
10.3929/ethz-b-000442868
dc.description.abstract
Given a Hermitian line bundle L→ M over a closed, oriented Riemannian manifold M, we study the asymptotic behavior, as ϵ→ 0 , of couples (uϵ, ∇ ϵ) critical for the rescalings Eϵ(u,∇)=∫M(|∇u|2+ϵ2|F∇|2+14ϵ2(1-|u|2)2)of the self-dual Yang–Mills–Higgs energy, where u is a section of L and ∇ is a Hermitian connection on L with curvature F∇. Under the natural assumption lim sup ϵ→Eϵ(uϵ, ∇ ϵ) < ∞, we show that the energy measures converge subsequentially to (the weight measure μ of) a stationary integral (n- 2) -varifold. Also, we show that the (n- 2) -currents dual to the curvature forms converge subsequentially to 2 πΓ , for an integral (n- 2) -cycle Γ with | Γ | ≤ μ. Finally, we provide a variational construction of nontrivial critical points (uϵ, ∇ ϵ) on arbitrary line bundles, satisfying a uniform energy bound. As a byproduct, we obtain a PDE proof, in codimension two, of Almgren’s existence result for (nontrivial) stationary integral (n- 2) -varifolds in an arbitrary closed Riemannian manifold.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Minimal submanifolds from the abelian Higgs model
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-09-10
ethz.journal.title
Inventiones mathematicae
ethz.journal.volume
223
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Invent. math.
ethz.pages.start
1027
en_US
ethz.pages.end
1095
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Geometric Analysis of Scalar and Non Scalar Conformally invariant Variational Problems
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Berlin
en_US
ethz.publication.status
published
en_US
ethz.grant.agreementno
172707
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2020-09-26T19:39:53Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-02-10T14:28:21Z
ethz.rosetta.lastUpdated
2023-02-06T21:25:39Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Minimal%20submanifolds%20from%20the%20abelian%20Higgs%20model&rft.jtitle=Inventiones%20mathematicae&rft.date=2021-03&rft.volume=223&rft.issue=3&rft.spage=1027&rft.epage=1095&rft.issn=0020-9910&1432-1297&rft.au=Pigati,%20Alessandro&Stern,%20Daniel&rft.genre=article&rft_id=info:doi/10.1007/s00222-020-01000-6&
Files in this item
Publication type
-
Journal Article [130529]